Bayesian Neighbourhood Component Analysis

نویسندگان

  • Dong Wang
  • Xiaoyang Tan
چکیده

Learning a good distance metric in feature space potentially improves the performance of the KNN classifier and is useful in many real-world applications. Many metric learning algorithms are however based on the point estimation of a quadratic optimization problem, which is time-consuming, susceptible to overfitting, and lack a natural mechanism to reason with parameter uncertainty, an important property useful especially when the training set is small and/or noisy. To deal with these issues, we present a novel Bayesian metric learning method, called Bayesian NCA, based on the well-known Neighbourhood Component Analysis method, in which the metric posterior is characterized by the local label consistency constraints of observations, encoded with a similarity graph instead of independent pairwise constraints. For efficient Bayesian optimization, we explore the variational lower bound over the log-likelihood of the original NCA objective. Experiments on several publicly available datasets demonstrate that the proposed method is able to learn robust metric measures from small size dataset and/or from challenging training set with labels contaminated by errors. The proposed method is also shown to outperform a previous pairwise constrained Bayesian metric learning method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime

BACKGROUND Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hiera...

متن کامل

Learning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis

‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...

متن کامل

Bayesian Spatial Uncertainty Analysis

The term uncertainty originates from imperfect knowledge of the processes under question. These errors are sometimes associated with questionable data quality and scarcity; complexity of the phenomena that are treated by models as simplified systems. Important components of uncertainty analysis include (i) qualitative analysis that identifies the uncertainties, (ii) quantitative analysis of the...

متن کامل

On the Construction of the Inclusion Boundary Neighbourhood for Markov Equivalence Classes of Bayesian Network Structures

The problem of learning Markov equivalence classes of Bayesian network structures may be solved by searching for the maximum of a scoring metric in a space of these classes. This paper deals with the definition and analysis of one such search space. We use a theoretically motivated neighbourhood, the inclusion boundary, and represent equivalence classes by essential graphs. We show that this se...

متن کامل

A two-component Bayesian mixture model to identify implausible gestational age

Background: Birth weight and gestational age are two important variables in obstetric research. The primary measure of gestational age is based on a mother’s recall of her last menstrual period. This recall may cause random or systematic errors. Therefore, the objective of this study is to utilize Bayesian mixture model in order to identify implausible gestational age.   Methods: ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1604.02354  شماره 

صفحات  -

تاریخ انتشار 2016